

Methodology for Composite Durability Assessment

Akira Kuraishi **Stanford University**

Jonathan H. Gosse
Jeffrey A. Wollschlager
John L. Townsley
The Boeing Company

Acknowledgements

Jointly accomplished by a BOEING Led Team and the U.S. Government under the guidance of NAST

Work funded by DARPA/DSO and administered by NAST through TIA N00421-01-3-0098

Acknowledge the support of Dr. Steve Wax and Dr. Leo Christodoulou of DARPA/DSO

Specific to this presentation:

- Prof. Yasushi Miyano of Kanazawa Institute of Technology
- Prof. Stephen W. Tsai and Prof. Richard M. Christensen of Stanford University
- Prof. Sung Kyu Ha of Hanyang University

Objective

The goal of the AIM-C program

- (1) Accelerate the insertion of new materials and processes
- (2) Evaluate the effects of material, processing, and design on the performance of composite structures

Our objective is to add the capability to analyze

• Environmental effects

- Temperature
- Moisture

Durability

- Creep Loading
- Fatigue Loading
- Residual Strength

Approach

Our approach is based on the following methods

1. Accelerated Testing Methodology

- Accelerated durability assessment
- Evaluate effects of temperature and loading on strength

2. Strain Invariant Failure Theory (SIFT)

- Relate fiber and matrix to composite structures
- Significant reduction in required durability tests
- Simplifies effects of moisture and temperature

Typical Approach to Durability

Fatigue, creep, or static loading

Cycles to failure

Time to failure \Rightarrow ignored

Temperature \Rightarrow fixed

Moisture \Rightarrow fixed

Ply orientations \Rightarrow fixed

Applied stress state \Rightarrow fixed

S-N Curve Approach

applicable only to limited ply orientations, loads, temperatures, etc.

Geometry

"Static" Failure Analysis
optimized for static strength

and later checked for durability

Durability data applicable only to intended applications

Our Approach to the Durability of Composites

Fatigue, creep, or static loading

Cycles to failure

Time to failure

Temperature

Moisture

Accelerated Testing Methodology

applicable to wide ranges of loads, temperatures, etc.

Ply orientations

Applied stress state

Geometry

Failure Analysis

SIFT modified for timeand temperature-dependence

Durability data applicable to wide ranges of applications

Accelerated Testing Methodology

Series of tests at elevated temperature

Predictions for wide ranges of temperature and time to failure

Time-Temperature Superposition A

Principle

Assumption: Same curve for any temperature = Master Curve

All curves can be superposed by $T_1 < T_2 < T_3$ horizontal shift

Master curve can be determined from curves at different temperatures

Well established principle for viscoelastic materials

Time-Temperature Superposition on

Strength

Assumption: Same curve for any temperature = Master Curve

All curves can be superposed by horizontal shift

Master curve can be determined from curves at different temperatures

Related to the viscoelastic fracture and not the chemical degrada

Master Curve of Static Strength

Time Temperature Shift Factors

Creep Compliance of CFRP

Storage Modulus of Resin

log t' [min]

Same shift factors for various cases with common resin system

Relate Static Strength and Creep Life

Linear Cumulative Damage Law with respect to time

$$\frac{\Delta t}{t_{c,1}} + \frac{\Delta t}{t_{c,2}} + \dots + \frac{\Delta t}{t_{c,n}} = 1$$

Simple relation between creep life and static strength

Master Curve of Creep Life

Time to failure at 25°C
Time to failure at 50°C

BOEING

1min 100min 1wk 2yrs 190yrs 1min 100min 1wk 2yrs 190yrs

Creep Predictions and Measurements

CFRP Bolted Joint Tensile Creep Test (Miyano)

Time to Failure [log min]

Creating the Fatigue Master Curves

1. Calculate time to failure $t_f = N_f / 60f$

- 2. Shift S-t_f curves
- 3. Connect constant N_f

Predict long-term fatigue from S-N curves at elevated

Fatigue Master Curves

CFRP Bolted Joint Tensile Fatigue Strength (Miyano)

Fatigue Predictions and Measurements

CFRP Bolted Joint Fatigue Strength - Frequency Effect (Miyano)

Frequency effect on fatigue strength is correctly predicted

Cumulative Damage Law

Miner's Rule accumulates damage due to load cycles

Robinson's Rule accumulates damage due to loading time

Robinson's Rule: $t_1 / t_{f,1} + t_2 / t_{f,2} + t_3 / t_{f,3} + ... = 1$

Limitation of the Methodology

Current limitations of the Accelerated Testing Methodology are

- Series of constant-strain-rate tests and fatigue tests must be performed for each ply orientations and test configurations
- Tests must be performed for both dry and wet conditions
- Links between the resin and composite properties are observed but cannot be explained

Why Combine with SIFT

SIFT will provide keys to

- Predict the strength of complex structures from basic properties
- Reduce the numbers of durability tests
- Link the resin properties to composite properties
- Effect of moisture and other degradations are easier to analyze at the resin level

Strain Invariant Failure Theory

Detailed 3D FEA of complex structures combined with simple strain-based failure criterion

Micro-Mechanical Analysis in SIFT

SIFT evaluates local strain states of fiber and matrix through extensive Micromechanical analysis

Advantages for our durability analysis

- Significant reduction of the required durability tests
- Easier to analyze the **temperature** and **moisture** effects of resin
- Generate ply properties: A bottom up tool

Example of the Square Array Model and Hexagonal Array Model (Ha)

SIFT Analysis Procedure

3-D macro strains due to mechanical and thermal load

3-D micro strains

at various locations in the fiber and resin

+
Micro thermal strains

due to CTE mismatch of fiber and resin Strain invariants in the resin and in the fiber

Critical invariants

Electronic Carpet Plot

Predicted Ply Properties

- Material: IM7/Epoxy, $E_f/E_m=92$
- Square and Hexagonal Micromechanics Model
- Compared with the Modified Rule of Mixture

Transverse modulus / Resin modulus

Longitudinal CTE / Fiber CTE

(with test data for comparison)

Ply Strength Predicted from Resin Properties

Test data and master curve of resin tensile strength (828resin)

Predicted Creep Life

1min 100min 1wk 2yrs 190yrs

TOEING* 1min 100min 1wk 2yrs 190yrs

time to failure at 60°C time to failure at 80°C

Residual Strength after Creep Loading

Master curve of static strength Master curve of creep life

Based on linear cumulative damage law and time-dependence of strength

Residual static strength after creep loading

Conclusion

- Accelerated Testing Methodology (ATM) is the key to the long-term material characterization of composite materials
- The generated fatigue and creep master curves are applicable to wide ranges of temperature, time to failure, and loading conditions, making them ideal building blocks of material durability database.
- ATM / SIFT combination can be used to predict the durability of complex composite structures based on the durability database of the basic material properties.

